Universal resilience patterns in complex networks

Jianxi Gao, Baruch Barzel, Albert László Barabási*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract (may include machine translation)

Resilience, a system's ability to adjust its activity to retain its basic functionality when errors, failures and environmental changes occur, is a defining property of many complex systems1. Despite widespread consequences for human health2, the economy3 and the environment4, events leading to loss of resilience-from cascading failures in technological systems5 to mass extinctions in ecological networks6-are rarely predictable and are often irreversible. These limitations are rooted in a theoretical gap: the current analytical framework of resilience is designed to treat low-dimensional models with a few interacting components7, and is unsuitable for multi-dimensional systems consisting of a large number of components that interact through a complex network. Here we bridge this theoretical gap by developing a set of analytical tools with which to identify the natural control and state parameters of a multi-dimensional complex system, helping us derive effective one-dimensional dynamics that accurately predict the system's resilience. The proposed analytical framework allows us systematically to separate the roles of the system's dynamics and topology, collapsing the behaviour of different networks onto a single universal resilience function. The analytical results unveil the network characteristics that can enhance or diminish resilience, offering ways to prevent the collapse of ecological, biological or economic systems, and guiding the design of technological systems resilient to both internal failures and environmental changes.

Original languageEnglish
Pages (from-to)307-312
Number of pages6
JournalNature
Volume530
Issue number7590
DOIs
StatePublished - 17 Feb 2016

Fingerprint

Dive into the research topics of 'Universal resilience patterns in complex networks'. Together they form a unique fingerprint.

Cite this