Abstract (may include machine translation)
Trace elements (TEs) occur at minor concentration (>1 g kg−1) in the organisms, and some are essential nutrients (Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, B, and Cl) for animals and plants. As a consequence of human activities such as industrial production, mining, transport, and agriculture, they are released in the environment at high concentrations. TEs can accumulate over time under specific environmental conditions, thus becoming environmental contaminants (Cs, Cr, W, U, Cd, Hg, Tl, Pb, Sn, As, Sb, Se). The environmental risk of TEs is associated with the mobility and bioavailability of the metals more than their total concentration. When they become environmentally mobile and move between media (i.e. soil to water), they can enter the food chain by being taken up by plants and animals. TEs cannot be degraded or broken down and at high concentration are toxic to organisms and tend to bioaccumulate in the environment. For example, selenium (Se) is a naturally occurring element with a wide distribution in almost all parent materials on Earth. At low concentration, Se is an essential nutrient but at high concentration is toxic. In the western side of the San Joaquin Valley in California, soils contain significant quantities of soluble mineral salts and trace elements such as Se and boron (B) that have been leached into shallow groundwater and/or drainage waters because of irrigation practices at Kesterson Reservoir in California. Soluble Se bioaccumulated in the avian food chain and resulted in an environmental disaster with high mortality and reproduction failure of migratory birds (Letey et al. 2002; Ohlendorf et al. 1986).
Original language | English |
---|---|
Title of host publication | Environmental Sustainability |
Subtitle of host publication | Role of Green Technologies |
Editors | P. Thangavel, G. Sridevi |
Publisher | Springer India |
Pages | 217-228 |
Number of pages | 12 |
ISBN (Electronic) | 9788132220565 |
ISBN (Print) | 9788132220558 |
DOIs | |
State | Published - 1 Jan 2015 |
Externally published | Yes |