Projects per year
Abstract (may include machine translation)
Extensive programmes around the world endeavour to measure and catalogue the composition of food. Here we analyse the nutrient content of the full US food supply and show that the concentration of each nutrient follows a universal single-parameter scaling law that accurately captures the eight orders of magnitude in nutrient content variability. We show that the universality is rooted in the biochemical constraints obeyed by the metabolic pathways responsible for nutrient modulation, allowing us to confirm the empirically observed scaling law and to predict its variability in agreement with the data. We propose that the natural nutrient variability in food can be quantitatively formalized. This provides a mathematical rationale for imputing missing values in food composition databases and paves the way towards a quantitative understanding of the impact of food processing on nutrient balance and health effects.
Original language | English |
---|---|
Pages (from-to) | 375-382 |
Number of pages | 8 |
Journal | Nature Food |
Volume | 3 |
Issue number | 5 |
DOIs | |
State | Published - May 2022 |
Fingerprint
Dive into the research topics of 'Nutrient concentrations in food display universal behaviour'. Together they form a unique fingerprint.Projects
- 1 Active
-
DYNASNET: Dynamics and Structure of Networks
Barabási, A.-L. (PI) & Kertész, J. (Researcher)
European Commission - H2020 - European Research Council -Synergy Grant
1/09/19 → 28/02/27
Project: Research