Location, occupation, and semantics based socioeconomic status inference on twitter

Jacob Levy Abitbol, Marton Karsai, Eric Fleury

Research output: Contribution to Book/Report typesConference contributionpeer-review

Abstract (may include machine translation)

The socioeconomic status of people depends on a combination of individual characteristics and environmental variables, thus its inference from online behavioral data is a difficult task. Attributes like user semantics in communication, habitat, occupation, or social network are all known to be determinant predictors of this feature. In this paper we propose three different data collection and combination methods to first estimate and, in turn, infer the socioeconomic status of French Twitter users from their online semantics. Our methods are based on open census data, crawled professional profiles, and remotely sensed, expert annotated information on living environment. Our inference models reach similar performance of earlier results with the advantage of relying on broadly available datasets and of providing a generalizable framework to estimate socioeconomic status of large numbers of Twitter users. These results may contribute to the scientific discussion on social stratification and inequalities, and may fuel several applications.

Original languageEnglish
Title of host publicationProceedings - 18th IEEE International Conference on Data Mining Workshops, ICDMW 2018
EditorsHanghang Tong, Zhenhui Li, Feida Zhu, Jeffrey Yu
PublisherIEEE Computer Society
Pages1192-1199
Number of pages8
ISBN (Electronic)9781538692882
DOIs
StatePublished - 2 Jul 2018
Externally publishedYes
Event18th IEEE International Conference on Data Mining Workshops, ICDMW 2018 - Singapore, Singapore
Duration: 17 Nov 201820 Nov 2018

Publication series

NameIEEE International Conference on Data Mining Workshops, ICDMW
Volume2018-November
ISSN (Print)2375-9232
ISSN (Electronic)2375-9259

Conference

Conference18th IEEE International Conference on Data Mining Workshops, ICDMW 2018
Country/TerritorySingapore
CitySingapore
Period17/11/1820/11/18

Keywords

  • Data Collection
  • Data Integration
  • Machine Learning
  • Semantic Web
  • Social Computing

Fingerprint

Dive into the research topics of 'Location, occupation, and semantics based socioeconomic status inference on twitter'. Together they form a unique fingerprint.

Cite this