Link transmission centrality in large-scale social networks

Qian Zhang, Márton Karsai, Alessandro Vespignani

Research output: Contribution to journalArticlepeer-review

Abstract (may include machine translation)

Understanding the importance of links in transmitting information in a network can provide ways to hinder or postpone ongoing dynamical phenomena like the spreading of epidemic or the diffusion of information. In this work, we propose a new measure based on stochastic diffusion processes, the transmission centrality, that captures the importance of links by estimating the average number of nodes to whom they transfer information during a global spreading diffusion process. We propose a simple algorithmic solution to compute transmission centrality and to approximate it in very large networks at low computational cost. Finally we apply transmission centrality in the identification of weak ties in three large empirical social networks, showing that this metric outperforms other centrality measures in identifying links that drive spreading processes in a social network.

Original languageEnglish
Article number33
JournalEPJ Data Science
Volume7
Issue number1
DOIs
StatePublished - 1 Dec 2018
Externally publishedYes

Keywords

  • Diffusion processes
  • Link centrality measures
  • Social networks
  • Weak tie

Fingerprint

Dive into the research topics of 'Link transmission centrality in large-scale social networks'. Together they form a unique fingerprint.

Cite this