Leveraging contextual embeddings for detecting diachronic semantic shift

Matej Martinc, Petra Kralj Novak, Senja Pollak

Research output: Contribution to Book/Report typesConference contributionpeer-review

Abstract (may include machine translation)

We propose a new method that leverages contextual embeddings for the task of diachronic semantic shift detection by generating time specific word representations from BERT embeddings. The results of our experiments in the domain specific LiverpoolFC corpus suggest that the proposed method has performance comparable to the current state-of-the-art without requiring any time consuming domain adaptation on large corpora. The results on the newly created Brexit news corpus suggest that the method can be successfully used for the detection of a short-term yearly semantic shift. And lastly, the model also shows promising results in a multilingual settings, where the task was to detect differences and similarities between diachronic semantic shifts in different languages.

Original languageEnglish
Title of host publicationLREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings
EditorsNicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
PublisherEuropean Language Resources Association (ELRA)
Pages4811-4819
Number of pages9
ISBN (Electronic)9791095546344
StatePublished - 2020
Externally publishedYes
Event12th International Conference on Language Resources and Evaluation, LREC 2020 - Marseille, France
Duration: 11 May 202016 May 2020

Publication series

NameLREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings

Conference

Conference12th International Conference on Language Resources and Evaluation, LREC 2020
Country/TerritoryFrance
CityMarseille
Period11/05/2016/05/20

Keywords

  • Contextual embeddings
  • Diachronic news analysis
  • Diachronic semantic shift

Fingerprint

Dive into the research topics of 'Leveraging contextual embeddings for detecting diachronic semantic shift'. Together they form a unique fingerprint.

Cite this