TY - JOUR
T1 - Inequality and inequity in network-based ranking and recommendation algorithms
AU - Espín-Noboa, Lisette
AU - Wagner, Claudia
AU - Strohmaier, Markus
AU - Karimi, Fariba
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to directed social networks. To this end, we propose a directed network model with preferential attachment and homophily (DPAH) and demonstrate the influence of network structure on the rank distributions of these algorithms. Our main findings suggest that (i) inequality is positively correlated with inequity, (ii) inequality is driven by the interplay between preferential attachment, homophily, node activity and edge density, and (iii) inequity is driven by the interplay between homophily and minority size. In particular, these two algorithms reduce, replicate and amplify the representation of minorities in top ranks when majorities are homophilic, neutral and heterophilic, respectively. Moreover, when this representation is reduced, minorities may improve their visibility in the rank by connecting strategically in the network. For instance, by increasing their out-degree or homophily when majorities are also homophilic. These findings shed light on the social and algorithmic mechanisms that hinder equality and equity in network-based ranking and recommendation algorithms.
AB - Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to directed social networks. To this end, we propose a directed network model with preferential attachment and homophily (DPAH) and demonstrate the influence of network structure on the rank distributions of these algorithms. Our main findings suggest that (i) inequality is positively correlated with inequity, (ii) inequality is driven by the interplay between preferential attachment, homophily, node activity and edge density, and (iii) inequity is driven by the interplay between homophily and minority size. In particular, these two algorithms reduce, replicate and amplify the representation of minorities in top ranks when majorities are homophilic, neutral and heterophilic, respectively. Moreover, when this representation is reduced, minorities may improve their visibility in the rank by connecting strategically in the network. For instance, by increasing their out-degree or homophily when majorities are also homophilic. These findings shed light on the social and algorithmic mechanisms that hinder equality and equity in network-based ranking and recommendation algorithms.
UR - http://www.scopus.com/inward/record.url?scp=85124283385&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-05434-1
DO - 10.1038/s41598-022-05434-1
M3 - Article
C2 - 35132072
AN - SCOPUS:85124283385
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 2012
ER -