Estimation of Conditional Average Treatment Effects With High-Dimensional Data

Qingliang Fan*, Yu Chin Hsu, Robert P. Lieli, Yichong Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract (may include machine translation)

Given the unconfoundedness assumption, we propose new nonparametric estimators for the reduced dimensional conditional average treatment effect (CATE) function. In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. We consider two variants of the estimator depending on whether the nuisance functions are estimated over the full sample or over a hold-out sample. Building on Belloni at al. and Chernozhukov et al., we derive functional limit theory for the estimators and provide an easy-to-implement procedure for uniform inference based on the multiplier bootstrap. The empirical application revisits the effect of maternal smoking on a baby’s birth weight as a function of the mother’s age.

Original languageEnglish
Pages (from-to)313-327
Number of pages15
JournalJournal of Business and Economic Statistics
Volume40
Issue number1
DOIs
StatePublished - 2022

Keywords

  • Heterogeneous treatment effects
  • High-dimensional data
  • Uniform confidence band

Fingerprint

Dive into the research topics of 'Estimation of Conditional Average Treatment Effects With High-Dimensional Data'. Together they form a unique fingerprint.

Cite this