TY - JOUR
T1 - Efficient limited-time reachability estimation in temporal networks
AU - Badie-Modiri, Arash
AU - Karsai, Márton
AU - Kivelä, Mikko
N1 - Publisher Copyright:
© 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2020/5
Y1 - 2020/5
N2 - Time-limited states characterize many dynamical processes on networks: disease-infected individuals recover after some time, people forget news spreading on social networks, or passengers may not wait forever for a connection. These dynamics can be described as limited-waiting-time processes, and they are particularly important for systems modeled as temporal networks. These processes have been studied via simulations, which is equivalent to repeatedly finding all limited-waiting-time temporal paths from a source node and time. We propose a method yielding an orders-of-magnitude more efficient way of tracking the reachability of such temporal paths. Our method gives simultaneous estimates of the in- or out-reachability (with any chosen waiting-time limit) from every possible starting point and time. It works on very large temporal networks with hundreds of millions of events on current commodity computing hardware. This opens up the possibility to analyze reachability and dynamics of spreading processes on large temporal networks in completely new ways. For example, one can now compute centralities based on global reachability for all events or can find with high probability the infected node and time, which would lead to the largest epidemic outbreak.
AB - Time-limited states characterize many dynamical processes on networks: disease-infected individuals recover after some time, people forget news spreading on social networks, or passengers may not wait forever for a connection. These dynamics can be described as limited-waiting-time processes, and they are particularly important for systems modeled as temporal networks. These processes have been studied via simulations, which is equivalent to repeatedly finding all limited-waiting-time temporal paths from a source node and time. We propose a method yielding an orders-of-magnitude more efficient way of tracking the reachability of such temporal paths. Our method gives simultaneous estimates of the in- or out-reachability (with any chosen waiting-time limit) from every possible starting point and time. It works on very large temporal networks with hundreds of millions of events on current commodity computing hardware. This opens up the possibility to analyze reachability and dynamics of spreading processes on large temporal networks in completely new ways. For example, one can now compute centralities based on global reachability for all events or can find with high probability the infected node and time, which would lead to the largest epidemic outbreak.
UR - http://www.scopus.com/inward/record.url?scp=85086961127&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.101.052303
DO - 10.1103/PhysRevE.101.052303
M3 - Article
C2 - 32575201
AN - SCOPUS:85086961127
SN - 2470-0045
VL - 101
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 5
M1 - 052303
ER -