Correlations strike back (again): The case of associative memory retrieval

Cristina Savin, Peter Dayan, Máté Lengyel

Research output: Contribution to journalConference articlepeer-review

Abstract (may include machine translation)

It has long been recognised that statistical dependencies in neuronal activity need to be taken into account when decoding stimuli encoded in a neural population. Less studied, though equally pernicious, is the need to take account of dependencies between synaptic weights when decoding patterns previously encoded in an auto-associative memory. We show that activity-dependent learning generically produces such correlations, and failing to take them into account in the dynamics of memory retrieval leads to catastrophically poor recall. We derive optimal network dynamics for recall in the face of synaptic correlations caused by a range of synaptic plasticity rules. These dynamics involve well-studied circuit motifs, such as forms of feedback inhibition and experimentally observed dendritic nonlinearities. We therefore show how addressing the problem of synaptic correlations leads to a novel functional account of key biophysical features of the neural substrate.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
StatePublished - 2013
Externally publishedYes
Event27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States
Duration: 5 Dec 201310 Dec 2013

Fingerprint

Dive into the research topics of 'Correlations strike back (again): The case of associative memory retrieval'. Together they form a unique fingerprint.

Cite this