Abstract (may include machine translation)
We generalize the model of self-organized critical systems to cases where due to some internal degrees of freedom the local conservation law is violated. This can be realized by taking a transfer ratio different from the critical one in a sand pile model (global violation) or allowing fluctuations around the critical ratio (local violation). In the first case the deviation from the critical ratio R is a critical parameter and the characteristic avalanche size diverges as |R|-ψ. In the second case the global conservation assures criticality; however, our numerical results indicate that the model is in a new universality class.
| Original language | English |
|---|---|
| Pages (from-to) | 923-932 |
| Number of pages | 10 |
| Journal | Journal of Statistical Physics |
| Volume | 61 |
| Issue number | 3-4 |
| DOIs | |
| State | Published - Nov 1990 |
| Externally published | Yes |
Keywords
- Self-organized criticality
- conservation
- fluctuations
- universality