TY - JOUR
T1 - Adaptation to unstable coordination patterns in individual and joint actions
AU - Wolf, Thomas
AU - Sebanz, Natalie
AU - Knoblich, Günther
N1 - Publisher Copyright:
© 2020 Wolf et al.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Previous research on interlimb coordination has shown that some coordination patterns are more stable than others, and function as attractors in the space of possible phase relations between different rhythmic movements. The canonical coordination patterns, i.e. the two most stable phase relations, are in-phase (0 degree) and anti-phase (180 degrees). Yet, musicians are able to perform other coordination patterns in intrapersonal as well as in interpersonal coordination with remarkable precision. This raises the question of how music experts manage to produce these unstable patterns of movement coordination. In the current study, we invited participants with at least five years of training on a musical instrument. We used an adaptation paradigm to address two factors that may facilitate producing unstable coordination patterns. First, we investigated adaptation in different coordination settings, to test the hypothesis that the lower coupling strength between individuals during joint performance makes it easier to achieve stability outside of the canonical patterns than the stronger coupling during individual bimanual performance. Second, we investigated whether adding to the structure of action effects may support achieving unstable coordination patterns, both intra- and inter-individually. The structure of action effects was strengthened by adding a melodic contour to the action effects, a measure that has been shown to improve the acquisition of bimanual coordination skills. Adaptation performance was measured both in terms of asynchrony and variability thereof. As predicted, we found that producing unstable patterns benefitted from the weaker coupling during joint performance. Surprisingly, the structure of action effects did not help with achieving unstable coordination patterns.
AB - Previous research on interlimb coordination has shown that some coordination patterns are more stable than others, and function as attractors in the space of possible phase relations between different rhythmic movements. The canonical coordination patterns, i.e. the two most stable phase relations, are in-phase (0 degree) and anti-phase (180 degrees). Yet, musicians are able to perform other coordination patterns in intrapersonal as well as in interpersonal coordination with remarkable precision. This raises the question of how music experts manage to produce these unstable patterns of movement coordination. In the current study, we invited participants with at least five years of training on a musical instrument. We used an adaptation paradigm to address two factors that may facilitate producing unstable coordination patterns. First, we investigated adaptation in different coordination settings, to test the hypothesis that the lower coupling strength between individuals during joint performance makes it easier to achieve stability outside of the canonical patterns than the stronger coupling during individual bimanual performance. Second, we investigated whether adding to the structure of action effects may support achieving unstable coordination patterns, both intra- and inter-individually. The structure of action effects was strengthened by adding a melodic contour to the action effects, a measure that has been shown to improve the acquisition of bimanual coordination skills. Adaptation performance was measured both in terms of asynchrony and variability thereof. As predicted, we found that producing unstable patterns benefitted from the weaker coupling during joint performance. Surprisingly, the structure of action effects did not help with achieving unstable coordination patterns.
UR - http://www.scopus.com/inward/record.url?scp=85084461134&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0232667
DO - 10.1371/journal.pone.0232667
M3 - Article
C2 - 32392210
AN - SCOPUS:85084461134
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e0232667
ER -