A dual algorithm for olfactory computation in the locust brain

Sina Tootoonian, Maté Lengyel

Research output: Contribution to journalConference articlepeer-review

Abstract (may include machine translation)

We study the early locust olfactory system in an attempt to explain its well-characterized structure and dynamics. We first propose its computational function as recovery of high-dimensional sparse olfactory signals from a small number of measurements. Detailed experimental knowledge about this system rules out standard algorithmic solutions to this problem. Instead, we show that solving a dual formulation of the corresponding optimisation problem yields structure and dynamics in good agreement with biological data. Further biological constraints lead us to a reduced form of this dual formulation in which the system uses independent component analysis to continuously adapt to its olfactory environment to allow accurate sparse recovery. Our work demonstrates the challenges and rewards of attempting detailed understanding of experimentally well-characterized systems.

Original languageEnglish
Pages (from-to)2276-2284
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume3
Issue numberJanuary
StatePublished - 2014
Externally publishedYes
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: 8 Dec 201413 Dec 2014

Fingerprint

Dive into the research topics of 'A dual algorithm for olfactory computation in the locust brain'. Together they form a unique fingerprint.

Cite this